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Do Servers Matter on Mastodon? Data-driven Design for Decentralized Social
Media
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When trying to join Mastodon, a decentralized collection of interoperable social networking servers, new users face the dilemma of
choosing a home server. Using trace data from millions of new Mastodon accounts, we show that new accounts are less likely to
remain active on the network’s largest general instances compared to others. Additionally, we observe a trend of users migrating
from larger to smaller servers. Addressing the challenge of onboarding and server selection, the paper proposes a decentralized
recommendation system for server using hashtags and the Okapi BM25 algorithm. This system leverages servers’ top hashtags and
their frequency to create a recommendation mechanism that respects Mastodon’s decentralized ethos. Simulations demonstrate that
such a tool can be effective even with limited data on each local server.
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1 INTRODUCTION

Following Twitter’s 2022 acquisition, Mastodon—an open-source, decentralized social network and microblogging
community—saw an increase in activity and attention as a potential Twitter alternative [6, 15]. While millions of
people set up new accounts and significantly increased the size of the network, many newcomers found the process
confusing and many accounts did not remain active. Unlike centralized social media platforms, Mastodon is a network
of independent servers with their own rules and norms [18]. Each server can communicate with each other using the
shared ActivityPub protocols and accounts can move between Mastodon servers, but the local experience can vary
widely from server to server.

Although attracting and retaining newcomers is a key challenge for online communities [14, 182], Mastodon’s
onboarding process has not always been straightforward. Variation among servers can also present a challenge for
newcomers who may not even be aware of the specific rules, norms, or general topics of interest on the server they
are joining [3]. Various guides and resources for people trying to join Mastodon offered mixed advice on choosing a
server. Some suggest that the most important thing is to simply join any server and work from there [13, 30], while
others have created tools and guides to help people find potential servers of interest by size and location[11, 31].

Mastodon’s decentralized design has long been in tension with the disproportionate popularity of a small set of
large, general-topic servers within the system [20]. Analysing the activity of new accounts that join the network, we
find that users who sign up on such servers are less likely to remain active after 91 days. We also find that many users
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who move accounts tend to gravitate toward smaller, more niche servers over time, suggesting that established users
may also find additional utility from such servers.

In response to these findings, we propose a potential way to create server and tag recommendations on Mastodon.
This recommendation system could both help newcomers find servers that match their interests and help established
accounts discover “neighborhoods” of related servers to enable further discovery.

2 BACKGROUND

2.1 Empirical Setting

The Fediverse is a set of decentralized online social networks which interoperate using shared protocols like Activi-
tyPub. Mastodon is a software program used by many Fediverse servers and offers a user experience similar to the
Tweetdeck client for Twitter. It was first created in late 2016 and saw a surge in interest in 2022 during and after Elon
Musk’s Twitter acquisition.

Mastodon features three kinds of timelines. The primary timeline is a “home” timeline which shows all posts from
accounts followed by the user. Mastodon also supports a “local” timeline which shows all public posts from the local
server and a “federated” timeline which includes all posts from users followed by other users on their server. The local
timeline is unique to each server and can be used to discover new accounts and posts from the local community. On
larger servers, this timeline can be unwieldy; however, on smaller servers, this presents the opportunity to discover
new posts and users of potential interest.

Discovery has been challenging onMastodon. Text search, for instance, was impossible onmost servers until support
for this feature was added on an optional, opt-in basis using Elasticsearch in late 2023 [24]. Recommendation systems
are currently a somewhat novel problem in the context of decentralized online social networks. Trienes et al. [32]
developed a recommendation system for finding new accounts to follow on the Fediverse which used collaborative
filtering based on BM25 in an early example of a content discovery system on Mastodon.

Individual Mastodon servers can have an effect on the end experience of users. For example, some servers may
choose to federate with some servers but not others, altering the topology of the Fediverse network for their users. At
the same time, accounts can only map to one specific server. Because of Mastodon’s data portability, users can move
their accounts freely between servers while retaining their followers, though their post history remains with their
original account.

2.2 The Mastodon Migrations

Mastodon saw a surge in interest in 2022 and 2023, particularly after Elon Musk’s Twitter acquisition. In particular,
four events of interests drove measurable increases in new users to the network: the announcement of the acquisition
(April 14, 2022), the closing of the acquisition (October 27, 2022), a day when Twitter suspended a number of prominent
journalists (December 15, 2022), and a day when Twitter experienced an outage and started rate limiting accounts (July
1, 2023). Many Twitter accounts announced they were setting up Mastodon accounts and linked their new accounts
to their followers, often using tags like #TwitterMigration[6] and driving interest in Mastodon in a process La Cava
et al. [15] found consistent with social influence theory.

Some media outlets have framed reports on Mastodon [9] through what Zulli et al. [36] calls the “Killer Hype Cycle”,
whereby the media finds a new alternative social media platform, declares it a potential killer of some established
platform, and later calls it a failure if it does not displace the existing platform. Such framing fails to take systems like
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the Fediverse seriously for their own merits: completely replacing existing commercial systems is not the only way to
measure success, nor does it account for the real value the Fediverse provides for its millions of active users.

Mastodon’s approach to onboarding has also changed over time. In much of 2020 and early 2021, the Mastodon
developers closed sign-ups to their flagship server and linked to an alternative server, which saw increased sign-ups
during this period. They also linked to a list of servers on the “Join Mastodon” webpage [17], where all servers are
pre-approved and follow the Mastodon Server Covenant which guarantees certain content moderation standards and
data protections. Starting in 2023, the Mastodon developers shifted toward making the flagship server the default when
people sign up on the official Mastodon Android and iOS apps [25, 26].

2.3 Newcomers in Online Communities

Onboarding newcomers is an important part of the life cycle of online communities. Any community can expect a
certain amount of turnover, and so it is important for the long-term health and longevity of the community to be able
to bring in new members [14, 182]. However, the process of onboarding newcomers is not always straightforward.

The series of migrations of new users into Mastodon in many ways reflect folk stories of “Eternal Septembers” on
previous communication networks, where a large influx of newcomers challenged the existing norms [4, 10]. Many
Mastodon servers do have specific norms which people coming from Twitter may find confusing, such as local norms
around content warnings [18]. Variation among servers can also present a challenge for newcomers who may not even
be aware of the specific rules, norms, or general topics of interest on the server they are joining [3]. Mastodon servers
open to new accounts must thus be both accommodating to newcomers while at the same ensuring the propagation
of their norms and culture, either through social norms or through technical means.

2.4 Recommendation Systems and Collaborative Filtering

Recommender systems help people filter information to find resources relevant to some need [22]. The development
of these systems as an area of formal study harkens back to information retrieval (e.g. Salton and McGill [27]) and
foundational works imagining the role of computing in human decision-making (e.g. Bush [1]). Early work on these
systems produced more effective ways of filtering and sorting documents in searches such as the probabilistic models
that motivated the creation of the okapi (BM25) relevance function [23]. Many contemporary recommendation systems
use collaborative filtering, a technique which produces new recommendations for items based on the preferences of a
collection of similar users [12].

Collaborative filtering systems build on top of a user-item-rating (𝑈 − 𝐼 − 𝑟 ) model where there is a set of users who
each provide ratings for a set of items. The system then uses the ratings from other users to predict the ratings of a
user for an item they have not yet rated and uses these predictions to create a ordered list of the best recommendations
for the user’s needs [5, 86-87]. Collaborative filtering recommender systems typically produce better results as the
number of users and items in the system increases; however, they must also deal with the “cold start” problem, where
limited data makes recommendations unviable [16].The cold start problem has three possible facets: boostrapping new
communities, dealing with new items, and handling new users [29, 311-312]. In each case, limited data on the entity
makes it impossible to find similar entities without some way of building a profile. Further, uncorrected collaborative
filtering techniques often also produce a bias where more broadly popular items receive more recommendations than
more obscure but possibly more relevant items [35]. Research on collaborative filtering has also shown that the quality
of recommendations can be improved by using a combination of user-based and item-based collaborative filtering [28].
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Although all forms of collaborative filtering use some combination of users and items, there are twomain approaches
to collaborative filtering: memory-based and model-based. Memory-based approaches use the entire user-item matrix
to make recommendations, while model-based approaches use a reduced form of the matrix to make recommenda-
tions. This is particularly useful because the matrix of items and users tends to be extremely sparse, e.g. in a movie
recommendor system, most people have not seen most of the movies in the database. Singular value decomposition
(SVD) is one such dimension reduction technique which transforms a𝑚 × 𝑛 matrix 𝑀 into the form 𝑀 = 𝑈 Σ𝑉𝑇 [19].
SVD is particularly useful for recommendation systems because it can be used to find the latent factors which underlie
the user-item matrix and use these factors to make recommendations.

While researchers in the recommendation system space often focus onways to design the system to produce good re-
sults mathematically, human-computer interaction researchers also consider various human factors which contribute
to the overall system. Crucially, McNee et al. argued “being accurate is not enough”: user-centric evaluations, which
consider multiple aspects of the user experience, are necessary to evaluate the full system. HCI researchers have
also contributed pioneering recommender systems in practice. For example, GroupLens researchers Resnick et al. [21]
created a collaborative filtering systems for Usenet and later produced advancements toward system evaluation and ex-
plaination of movie recommendations [7, 8]. Cosley et al. [2] created a system to match people with tasks onWikipedia
to encourage more editing. This prior work shows that recommender systems can be used to help users find relevant
information in a variety of contexts.

2.5 Evaluation of Recommendation Systems

Evaluating recommender systems can be tricky because ameasure of good performancemust take into account various
dimensions[34]. A measure of accuracy must be paired with a question of “accuracy toward what?” Explainability
requires a transparent means of showing the user why a certain item was recommended.

It is often important to both start with an end goal in mind and to keep evaluation integrated throughout the entire
process of creating a recommender systems, from conceptualization to optimization. There are several considerations
to keep in mind such as the trade-off between optimizing suggestions and the risks of over-fitting. For example, a
system designed to create suggestions with the highest propensity that the user will like the recommendations may
struggle with a reduced diversity of its suggestions.

Recommender systems can be evaluated using three board categories of techniques: offline, online, and user studies.
Offline evaluation uses pre-collected data and a measure to describe the performance of the system, assuming there is
insufficient relevance to the difference in time between when the data was collected and the present moment. Online
evaluation uses a deployed, live system, e.g. A/B testing. In this case, the user is often unaware of the experiment. In
contrast, user studies involve subjects which are aware they are being studied.

3 DATA

Mastodon has an extensive API which allows for the collection of public posts and account information. We collected
data from the public timelines of Mastodon servers using the Mastodon API with a crawler which runs once per day.
We also collected account information from the opt-in public profile directories on these servers.

Mastodon Profiles: We collected accounts using data previously collected from posts on public Mastodon timelines
from October 2020 to August 2023. We then queried for up-to-date information on those accounts including their most
recent status and if the account had moved as of February 2024.Through this process, we discovered a total of 1,784,438
account created between August 14, 2020 and January 1, 2024. We then filtered out accounts which were bots (19,014
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Fig. 1. Accounts in the dataset created between January 2022 and March 2023. The top panels shows the proportion of accounts still
active 45 days after creation, the proportion of accounts that have moved, and the proportion of accounts that have been suspended.
The bottom panel shows the count of accounts created each week. The dashed vertical lines in the bottom panel represent the
annoucement day of the Elon Musk Twitter acquisition, the acquisition closing day, a day where Twitter suspended a number of
prominent journalist, and a day when Twitter experienced an outage and started rate limiting accounts.

accounts), had been suspended (163,721 accounts), had been marked as moved to another account (41,111 accounts),
had been limited by their local server (6,062 accounts), had no statuses (140,870 accounts), or had posted their last
status on the same day as their account creation (391,173 accounts). This gave us a total of 1,067,546 accounts which
met all the filtering criteria. Note that because we got updated information on each account, we include only accounts
on servers which still existed at the time of our profile queries and which returned records for the account.

Tags: Mastodon supports hashtags, which are user-generated metadata tags that can be added to posts. Clicking the
link for a tag shows a stream of posts which also have that tag from the federated timeline, which includes accounts on
the same server and posts from accounts followed by the accounts on the local server. We collected 1,206,779 statuses
posted by 67,604 accounts on 723 unique servers from between May to July 2023 which contained at least one hashtag.

4 ANALYSIS AND RESULTS

4.1 Survival Model

Are accounts on suggested general servers less likely to remain active than accounts on other servers?

4.1.1 Kaplan–Meier Estimator. Using 28,258 accounts created from May 1 to June 30, 2023, we create a Kaplan–Meier
estimator for the probability that an account will remain active based on whether the account is on one of the largest
general instances 1 featured at the top of the Join Mastodon webpage or otherwise if it is on a server in the Join
Mastodon list. Accounts are considered active if they have made at least one post after the censorship period 91 days
after account creation.

4.1.2 Mixed Effects Cox Proportional HazardModel. We also construct aMixed Effects Cox Proportional HazardModel

1mastodon.social, mstdn.social, mastodon.world, mas.to, mastodon.online, mastodonapp.uk, universeodon.com, masto.ai, c.im, social.vivaldi.net,
mstdn.party, ohai.social
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Fig. 2. Survival probabilities for accounts created during May 2023.

Table 1. Coefficients for the Cox Proportional Hazard Model with Mixed Effects. The model includes a random effect for the server.

term estimate exp.coef p.value
Join Mastodon 0.115 (0.97, 1.3) 0.117
General Servers 0.385 (1.07, 2.01) 0.017
Small Server -0.245 (0.66, 0.92) 0.003

ℎ(𝑡𝑖 𝑗 ) = ℎ0 (𝑡) exp

©«

𝛽1Join Mastodon

+ 𝛽2General Servers

+ 𝛽3Small Server

+ 𝑏 𝑗

ª®®®®®®®¬
where ℎ(𝑡𝑖 𝑗 ) is the hazard for account 𝑖 on server 𝑗 at time 𝑡 , ℎ0 (𝑡) is the baseline hazard, 𝛽1 is the coefficient for

whether the account is on a server featured on Join Mastodon, 𝛽2 is the coefficient for whether the account is on one
of the largest general instances, 𝛽3 is the coefficient for whether the account is on a small server with less than 100
accounts, and 𝑏 𝑗 is the random effect for server 𝑗 .

We again find that accounts on the largest general instances are less likely to remain active than accounts on other
servers, while accounts created on smaller servers are more likely to remain active.

4.1.3 Logistic Regression. First, we calculate a continuous measure for the generality of the server based on the item-
item similarity between servers. We then use this measure to predict whether an account will remain active after 91
days using a logistic regression model.

The results of this analysis again suggests that the generality of the server is negatively associatedwith the likelihood
that an account will remain active after 91 days.
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(1)
(Intercept) −0.416

(0.092)
generality −0.788

(0.100)
Num.Obs. 25 322
AIC 28 029.8
BIC 28 046.1
Log.Lik. −14 012.898
RMSE 0.43

Table 2. Exponential family random graph models for account movement between Mastodon servers. Accounts in Model A were
created in May 2022 and moved to another account at some later point. Accounts in Model B were created at some earlier point and
moved after October 2023.

Model A Model B
Coef. Std.Error Coef. Std.Error

Sum −9.529 ***0.188 −10.268 ***0.718
Nonzero −3.577 ***0.083 −2.861 ***0.254
Smaller server 0.709 ***0.032 0.629 ***0.082
Server size (outgoing) 0.686 ***0.013 0.655 ***0.042
Open registrations (incoming) 0.168 ***0.046 −0.250 0.186
Languages match 0.044 0.065 0.589 0.392

4.2 Moved Accounts

Do accounts tend to move to larger or smaller servers?

Mastodon users can move their accounts to another server while retaining their connections (but not their posts)
to other Mastodon accounts. This feature, built into the Mastodon software, offers data portability and helps avoid
lock-in.

To corroborate our findings, we also use data from thousands of accounts which moved between Mastodon servers,
taking advantage of the data portability of the platform. Conceiving of these moved accounts as edges within a
weighted directional network where nodes represent servers, edges represent accounts, and weights represent the
number of accounts that moved between servers, we construct an exponential family random graph model (ERGM)
with terms for server size, open registrations, and language match between servers. We find that accounts are more
likely to move from larger servers to smaller servers.

5 PROPOSED RECOMMENDATION SYSTEM

How can we build an opt-in, low-resource recommendation system for finding Fediverse servers?

Based on these findings, we suggest a need for better ways for newcomers to find servers and propose a viable way
to create server and tag recommendations on Mastodon. This system could both help newcomers find servers that
match their interests and help established accounts discover “neighborhoods” of related servers.
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5.1 Constraints and Evaluation

The decentralized web presents unique challenges for recommendation systems. Centralized recommendation systems
can collect data from all users and use this data to make recommendations. However, this is less desirable on the
decentralized web, where data is spread across many servers and users may not want to share their data with a central
authority. Instead, I propose a system where servers can report the top hashtags by the number of unique accounts on
the server using them during the last three months. Such a system would be opt-in and require few additional server
resources since tags already have their own database table. Because each server only reports aggregated counts of
publicly posted hashtags, this also reduces the risk of privacy violations.

In the Mastodon context, the cold start problem has two possible facets: there is no information on new servers and
there is also no information on new users. New servers are thus likely prone to falling for popularity bias: there is
simply more data on larger servers. A common strategy to deal with new users is to ask for some initial preferences
to create an initial workable user profile. In the case of this system, we ask the user to provide a set of tags which they
are interested in. We then use these tags to find the top servers which match these tags.

I plan to evaluate the system in part using the accounts which moved between servers. Based on their posting
history (e.g. hashtags), can the recommendations system predict where they will move to?

As my recommender system operates under the assumption that smaller, more topic-focused servers are better, it
follows that a diverse set of niche results which only match a few tags are more helpful than a set of results which
match a larger and more broad set of tags. The system therefore presents results sorted in a manner which encourages
a higher diversity of results.

One current limitation of my system is that it does not account for the relationship between tags, e.g. “union” and
“unions” are essentially the same tag and “furry” and “fursuit” are highly related tags which are in similar areas of
embedded space. In future revisions, I hope to account for the relationship between similar tags and pull the top
servers from clusters of highly related tags with the top priority going to clusters based on their number of selected
tags. This system could be implemented efficiently in O(nt) time given a minimum cluster size of 𝑡 .

5.2 Recommendation System Design

We use Okapi BM25 to construct a term frequency-inverse document frequency (TF-IDF) model to associate the top
tags with each server using counts of tag-account pairs from each server for the term frequency and the number of
servers that use each tag for the inverse document frequency. We then L2 normalize the vectors for each tag and
calculate the cosine similarity between the tag vectors for each server.

𝑡 𝑓 =
𝑓𝑡,𝑠 · (𝑘1 + 1)

𝑓𝑡,𝑠 + 𝑘1 · (1 − 𝑏 + 𝑏 · |𝑠 |
𝑎𝑣𝑔𝑠𝑡𝑙 )

where 𝑓𝑡,𝑠 is the number of accounts using the tag 𝑡 on server 𝑑 , 𝑘1 and 𝑏 are tuning parameters, and 𝑎𝑣𝑔𝑠𝑡𝑙 is the
average sum of account-tag pairs. For the inverse document frequency, we use the following formula:

𝑖𝑑 𝑓 = log
𝑁 − 𝑛 + 0.5
𝑛 + 0.5

where 𝑁 is the total number of servers and 𝑛 is the number of servers where the tag appears as one of the top tags.
We then apply L2 normalization:
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Table 3. Top five servers most similar to hci.social

Server Similarity
sigmoid.social 0.341
sciences.social 0.274
arvr.social 0.249
openedtech.social 0.233
akademienl.social 0.182

𝑡 𝑓 · 𝑖𝑑 𝑓 =
𝑡 𝑓 · 𝑖𝑑 𝑓

∥𝑡 𝑓 · 𝑖𝑑 𝑓 ∥2
We then used the normalized TF-IDF matrix to produce recommendations using SVD where the relationship be-

tween tags and servers can be presented as𝐴 = 𝑈 Σ𝑉𝑇 . We then use the similarity matrix to find the top servers which
match the user’s selected tags. We can also suggest related tags to users based on the similarity between tags,𝑈 Σ.

5.3 Applications

5.3.1 Server Similarity Neighborhoods. Mastodon provides two feeds in addition to a user’s home timeline populated
by accounts they follow: a local timeline with all public posts from their local server and a federated timeline which
includes all posts from users followed by other users on their server.We suggest a third kind of timeline, a neighborhood

timeline, which filters the federated timeline by topic.
We calculate the pairwise similarity between two servers with TF-IDF vectors 𝐴 and 𝐵 using cosine similarity:

similarity(𝐴, 𝐵) = 𝐴 · 𝐵
∥𝐴∥∥𝐵∥

For an example of how this might work in practice, consider a use-case for someone who is a researcher in the
field of human-computer interaction. They might be situated with an account on hci.social, but also interested in
discovering posts from account on similar related servers. We can use the similarity matrix to find the top five servers
most similar to hci.social, which is shown in Table 3.

5.3.2 Tag Similarity. We also calculate the similarity between tags using the same method.This can be used to suggest
related tags to users based on their interests.
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Fig. 3. 100 popular hashtags visualized in two dimensions using a principal component analysis (PCA) on the transformed singular
value decomposition (SVD) matrix.

5.3.3 Server Discovery. Given a set of popular tags and a list of servers, we build a recommendation system where
users select tags from a list of popular tags and receive server suggestions. The system first creates a subset of vectors
based on the TF-IDF matrix which represents the top clusters of topics. After a user selects the top tags of interest to
them, it suggests servers which match their preferences.

5.4 Evaluation

5.4.1 Server Recommendations for Users (Offline).

Time-based. For evaluation, we plan to use data from posts on accounts during a different time period from the one
we used to train the recommender system. The goal of the system is to suggest the best servers for these accounts.
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The SVD system predicts the server with a median rank of 8 and a mean rank of 18.

Movement-based. In parallel with the analysis of server survival, we also take an interest in users whomoved servers
since we can assume that these users found a server they liked better than their original server. We can use the recom-
mender system to predict where these users will move to and use these predictions to evaluate the system.

5.4.2 Online Evaluation. I have also given some thought to online evaluation. Could we use an aleternative version of the

front-end to produce recommendations for interesting servers from existing accounts?

5.4.3 Robustness to Limited Data. A challenge for a federated recommendation system like we propose is that it needs
buy in from a sufficient number of servers to provide value.There is also a tradeoff between the amount of tags to expose
for each server and potential concerns about exposing too much data.

We simulated various scenarios that limit both servers that report data and the number of tags they report. We used
rank biased overlap (RBO) to then compare the outputs from these simulations to the baseline with more complete
information from all tags on all servers [33]. In particular, we gave a higher weight to suggestions with a higher rank,
with weights decaying by a factor of 𝑘0.80. Figure 4 shows how the average agreement with the baseline scales, which
take the top 256 tags from each server.

6 DISCUSSION

This work provides a first step toward building a recommendation system for finding servers on the Fediverse based
on empirical evidence of trace data from thousands of Fediverse newcomers. We find that servers matter and that users
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Fig. 4

tend to move from larger servers to smaller servers. Our recommender system considers constraints in a novel context
where data is decentralized and privacy is a major concern. We propose a federated recommendation system which
can be implemented with minimal resources and which can provide value to users by helping them find servers which
match their interests.

The analysis can also be improved by additionally focusing on factors lead to accounts remaining active or drop-
ping out, which a particular focus on the actual activity of accounts over time. For instance, do accounts that interact
with other users more remain active longer? Are there particular markers of activity that are more predictive of ac-
count retention? Future work could use these to provide suggests for ways to helps newcomers during the onboarding
process.

The observational nature of the data limit some of the causal claims we can make. It is unclear, for instance, if
accounts on general servers are less likely to remain active because of the server itself or because of the type of users
who join such servers. For example, it is conceivable that the kind of person who spends more time researching which
server to join is more invested in their Mastodon experience than one who simply joins the first server they find.

6.1 Future Work

Future work is necessary to determine the how well the recommendation system is at helping users find servers that
match their interests.This may involve user studies and interviews to determine howwell the systemworks in practice.

While the work presented here is based on observed posts on the public timelines, simulations may be helpful in
determining the robustness of the system to targeted attacks. Due to the decentralized nature of the system, it is feasible
that a bad actor could set up zombie accounts on servers to manipulate the recommendation system. Simulations could
help determine how well the system can resist such attacks and ways to mitigate this risk.
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7 CONCLUSION

Based on analysis of trace data from millions of new Fediverse accounts, we find evidence that suggests that servers
matter and that users tend to move from larger servers to smaller servers. We then propose a recommendation system
that can help new Fediverse users find servers with a high probability of being a good match based on their interests.
Based on simulations, we demonstrate that such a tool can be effectively deployed in a federated manner, even with
limited data on each local server.
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.1 Glossary

ActivityPub: A decentralized social networking protocol based on the ActivityStreams 2.0 data format.
Fediverse: A set of decentralized online social networks which interoperate using shared protocols like ActivityPub.
Mastodon: An open-source, decentralized social network and microblogging community.
Hashtag: A user-generated metadata tag that can be added to posts.
Federated timeline: A timeline which includes all posts from users followed by other users on their server.
Local timeline: A timeline with all public posts from the local server.

.2 More Evaluation

.2.1 User Stories. We also illustrate the potential value of such a system with three user stories:
User Story 1: Juan is a human-computer interaction researcher looking for a server to connect with colleagues

and also share about his projects. He is interested in finding a server with a focus on research and technology. Juan
inputs the tags “research”, “academia”, and “technology” into the system and receives a list of servers which match his
interests: synapse.cafe, sciences.social, mathstodon.xyz, mastodon.social, mastodon.education.

User Story 2 (Arthur) just wants to connect with friends and family. For some reason, Arthur clicks every single
major category and gets the suggestions: mas.to, library.love, mastodon.world, mstdn.social.
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User Story 3 (Tracy) has run a niche fandom blog on Tumblr for the last eight years and is curious about migrating
to the Fediverse. She inputs the tags “doctorwho”, “fanart”, and “fanfiction” and gets the suggestions: blorbo.social,
mastodon.nz, sakurajima.moe, toot.kif.rocks, mastodon.scot.
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